分数除法的教学反思
作为一名优秀的人民教师,教学是重要的工作之一,借助教学反思我们可以学习到很多讲课技巧,我们该怎么去写教学反思呢?下面是小编帮大家整理的分数除法的教学反思,欢迎阅读,希望大家能够喜欢。
分数除法的教学反思1教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。
下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。
分数除法的教学反思2(看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论~于华静)
最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:
1、一找、二看、三判断
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。
2、弄清对应量、对应分数、单位‘1’
教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
3、线段图、数量关系、关系转化
(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。
(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多
加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。
分数除法的教学反思3本节课含两部分内容。第一部分内容是分数除法的意义。第二部分是分数除以整数的计算方法。
在教学第二单元分数的乘法时,出现学生对分数乘法的意义理解不够,所以,在进行分数除法的意义教学时,没有匆匆带过,或直接告诉学生,而是由整数除法的意义引入,再引导学生通过改编成一组分数除法题,让学生观察、推理出分数除法的意义。我留给学生时间去做,但还是有部分学生不得其要领。
第二部分内容通过例2引导学生用折纸的方法得出两种不同计算方法,再比较、归纳出分数除以整数(0除外)等于分数乘整数的倒数。这部分内容是教学的重点也是难点,所以动手操作是必要的。因为学生的动手操作能力较差,所以学生动手操作的时间花的比较 ……此处隐藏6908个字……到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。
分数除法的教学反思12这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
分数除法的教学反思13“已知一个数的几分之几是多少,求这个数”是抓住乘除法之间的内在联系,让学生通过观察,对比,借助线段图,分析题中的等量关系式,发现这类型的应用题的特点和解答的规律。
教学中注重对知识的概括,对比。复习题与新知,新知与新知的对比,从乘法应用题改成一道除法应用题,很自然地把学生引入到新课中,让学生在对比中发现本课应用题的特点,掌握解题方法,注重新旧知识的联系,留给学生充分的独立思考时间,让学生主动探索学会数学知识。激起学生探索数学知识的欲望,给学生学习探索的空间。使每个学生在课堂上都能得到发展。
同时注重拓展学生思维能力,学会分析解决分数除法应用题的方法。在解答应用题的时候,鼓励学生画线段图多角度分析问题,明确解答这类应用题的两种方法的特点,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系和解法的理解,提高能力。
从练习的效果来看,绝大多数学生能比较熟练地掌握已知一个数的几分之几,求另一个数的方法,数量关系正确,但也有一部分学生只会依葫芦画瓢,不会深究其为什么,数量关系也不太清晰,这样的学生在后续学习中问题就会显露得更多,正确率随着学习的深入会更加糟糕。加强学生审题能力的培养,数量关系的训练不能有一丝懈怠。
在本节课的教学中我主要渗透了数学自学学习习惯的养成,许多知识是由学生自学得出的结论。
分数除法的教学反思14首先通过课前谈话解决了分数除法的意义。接下去重点来研究第一环节分数除以整数的计算方法,我出示了这样一道例题:城西中心小学占地约为9/10公顷,如果按面积平均分成三块不同的区域,每块区域占地多少公顷?题目一出,学生马上就把算式列出来了,9/10÷3,怎么计算呢?通过四人小组讨论合作,最终相出了好几种方法。如9/10÷3=0.9÷3=0.3(公顷)9/10÷3=(9/10×1/3)÷(3×1/3)=3/10(公顷)9/10÷3=9/10×1/3=3/10(公顷)(因为把一块地看作一个整体,平均分成三块,其中的一块就占了这块的1/3,所以直接乘以1/3)等一些方法,通过比较最终得出9/10÷3=9/10×1/3=3/10(公顷)这种方法简便。接着我把9/10该为10/11,让他们再用自己发现的方法进行计算。结果学生们发现还是用这种方法简便,10/11÷3=10/11×1/3=10/33(公顷),最后,让他们观察、讨论、交流9/10÷3=9/10×1/3=3/10(公顷)与10/11÷3=10/11×1/3=10/33(公顷)这两题的计算方法,学生们发现除以整数等于乘以整数的倒数。第二环节解决一个数除以分数的计算方法。我把例题该为城西中心小学占地约为9/10公顷,如果每块区域占地为3/10公顷,平均分成几块不同的区域?有了第一题的基础,大部分学生马上就想到9/10÷3/10=9/10×10/3=3(块),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你在把9/10换成10/11的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把9/10公顷换成1公顷,你认为又该怎么计算呢?学生们说还是乘以它的倒数。那么从中你发现了什么?分数除法的计算方法学生们脱口而出。第三环节,做一些练习。
在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。
分数除法的教学反思15分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?
教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。
在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。
在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
文档为doc格式