当前位置:首页 > 教学资料 > 说课稿

《运算律》说课稿

时间:2024-06-08 23:59:45
《运算律》说课稿

《运算律》说课稿

作为一名教师,有必要进行细致的说课稿准备工作,说课稿有助于提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?以下是小编精心整理的《运算律》说课稿,仅供参考,大家一起来看看吧。

《运算律》说课稿1

第一板块教学资源分析:

1、教材分析

加法交换律和加法结合律是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。

在前三年的学习中学生对加法的交换律已有了一些感性的认识。在前面的教学中,教材对加法结合律也做了一些孕伏。这些都是学生学习加法交换律和结合律的基础。教材安排这两个运算律教学时,采用了不完全的归纳推理。两个运算律都是从学生熟悉的实际问题解答引入,让学生通过观察、比较、分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象概括出运算律。

第二板块教学目标分析:

教学目标是课堂教学的出发点,也是教学的归宿。根据我对教材和学生的分析,结合新课程理念要求我将从三方面制定教学目标:

(1)知识目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

(2)能力目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。

(3)情感目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

第三板块教学过程分析:

教学过程

课前谈话:

同学们都喜欢参加体育活动吧,来说说都喜欢哪些体育项目?

一、观察主题图,提出问题

同学们,气候渐渐转凉了,学校又要组织大家进行冬锻比赛了,冬锻比赛中有些什么项目呢?看,同学们正在紧张训练呢!

电脑出示情境图,提问:从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,相机以课件出示:参加跳绳的一共有多少人?参加活动的女生一共有多少人?参加活动的一共有多少人?

设计意图:紧扣教材中的主题图展开教学,让学生在观察的基础上指出图中所含的数学信息,并从中提出一些用加法计算的问题,有利于培养和提高学生用数学眼光看待事物的能力,同时也为后续的探究学习提供了基本素材。

二、教学加法交换律

1.列式计算。

指名学生口头列式,教师板书:28+17 17+28

2.观察两个算式:这两个算式都是来求出参加跳绳的人数,猜猜看结果可能会怎样?(相等)

3.学生计算,媒体演示,用等号连接。

4.观察比较这个等式,你有什么发现?

学生交流后板书:交换两个加数的位置,结果不变。

5.老师也从这个等式发现了一个规律出示:交换28和17的位置,和不变。

6.比较老师和你们的两个发现,哪一个发现肯定是正确的?为什么?

7.交流得出:老师的发现是通过计算证明了的,而你们的发现到底正确不正确还不知道,暂且就把这个发现看做是我们的猜想?(板书:猜想?)

既然是猜想就需要我们去验证(板书),同学们想想看,我们可以怎样来验证呢?

8.学生交流后得出:可以再举一些例子。

9.让学生再举例说一说,追问:现在我们有了几个这样的等式,能不能证明我们的猜想就正确了呢?(学生说还不能)

10.追问:到底要举多少个例子才能证明我们的猜想呢?(足够多)

11.达成共识:每个人举3个例子,整个班级就有一百多个例子,这样就比较多了。

12.学生自主举例,并且交流。

在交流的过程中,强调一定要把两边的结果计算了以后才能写上等号。

13.从同学们举的这些例子来看,都能够证明交换两个加数的位置,结果不变这个猜想。有没有找到交换两个加数的位置,结果发生变化的例子?

14.用语言文字叙说比较麻烦,大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在自备本上试着写一写。

教师巡视,让部分学生上台展示创意,并让学生解释说明。

展示后教师小结:看来,用符号、字母等表示就是简单!在数学上,我们统一用字母a、b来表示两个加数,可以写作a+b=b+a。

设计意图:教师顺应学生的学情,当学生感觉到用言语表述规律显得麻烦、不便时,教师及时让学生采用 自己喜欢的形式把规律表示出来,很适合学生的胃口,能够提高学生的学习兴致,也有利于培养学生的创新思维。

15.小结、揭题:刚才我们在解决实际问题时,通过列式计算,发现了规律,又自由列举了很多例子来验证了规律,最后探索出了一条重要规律。其实在一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律(板书课题运算律)。我们刚才发现的加法中的这条规律叫做加法交换律(板书:加法交换律),在数学上通常用字母a+b=b+a表示。

三、学习加法结合律

1.过渡:刚才通过解决第一个问题,我们研究出了加法交换律,现在我们再来研究这一个问题,看看会不会有新的发现?

2.列式计算,得出等式。

(1)指名回答,板书:28+17+23

第一步先求什么?(参加跳绳的人数)

为了看得更清楚,我们可给28+17添上括号,也就表示先算前两个数的和,再和第三个数相加,我们一起算一算结果是多少?(68人)

(2)还是这个式子28+17+23(板书),如果要先算参加活动的女生人数应该怎么办?

教师根据学生回答添上括号:28+(17+23)。

添上括号后表示先算后两个数的和,再跟第一个数相加,结果又是多少呢?我们一起算算结果又是多少?。(68人)

(3)比较答案,用等号连接两个算式。

3.请同学们观察比较这个等式,你有什么发现?

4.让学生用自己的语言交流。

5.小结:从刚才同学的交流中发现,要用语言来表述这个发现,好像有一定的困难,那能不能用我 ……此处隐藏9298个字……

1、教学内容:

这部分内容是本单元的第一教时,教学加法的两条运算律——加法交换律和加法结合律。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。

教学目标:

(1)知识技能目标:利用学生身边的事件,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

(3)情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

教学难点:

概括运算律。

教学准备:

多媒体课件。

二、说学情分析

学生从小学低年级开始就接触过加法的验算(交換两个加数的位置和不变)口算(数的分与合)等方面的知识,实际上对加法的交换律和加法结合律在潜意识里已有较多的感性认识,为新知的学习奠定了良好的基础。而且在实际计算的时候,很多学生是能够应用一些巧方法,使计算变得简单而且快。所以我没有从“零起点”展开教学。

三、说教学过程

(一)激趣导入

在课的一开始,我设置一个小竞赛,有意识让孩子巧算,充分调动学生的积极性。

(二)创设情境提出问题

出示例题,让学生提出用加法计算的问题。学生会提出如下的问题:

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

今天这节课,我们就一起来研究其中的这两个问题:参加跳绳的有多少人?参加活动的一共有多少人?

数学源于生活,生活中处处有数学,用学生身边事情引入新知,,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。

(三)研究加法交换律

1、解决问题,初步感知。

根据“参加跳绳的有多少人?”先让学生列式,引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+28。

2、观察特例,引发猜想。

接着,让学生观察这个等式,你有什么发现?(同桌交流并汇报)

学生一般会回答:

①两个加数交换了位置,但结果是相等的。

②28和17交换位置,但结果不变。

比较他们两的结论,你有什么要说的?学生可能会说:

通过学生的争辩,引出仅凭一个特例就得出“交换两个加数的位置,和不变”太草率了,不妨把这个结论当做我们的猜想。(板书:猜想)

3、举例验证,自主探索怎么验证?

生:再举一些这样的例子。

师:举多少个?(无数个)可能举无数个吗?(不可能)

每个同学举3个例子,然后同桌交换相互检查,看看他的算式两边的结果是否相等。

在这里,我充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。

4、观察等式,总结规律。

5、引导学生探索加法交换律的表达方式。

教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。

汇报:

预设

1:我们用数字(文字)

2:我们用符号表示

3:我们用字母表示

②比较表示的不同方式,提出用字母表示发现的规律比较简洁。出示板书:a+b=b+a

指出:这样的规律就是加法交换律。(板书)

学生可能有三种表示法:

①用文字(数字)表示;

②用符号表示;

③用字母表示。

数学上一般用字母来表示这些规律,板书:a+b=b+a。

帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。

(四)加法结合律

整个探索过程与“交换律”相似,不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。

1、再次出现主题图,研究:参加活动的一共有多少人?学生列式,得出(28+17)+23=28+(17+23)

2、算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、充分放手,让学生探索规律。

(1)再举两个例子验证下。

(2)你发现了什么规律,用简单的语言概括起来(同桌互相交流)。

(3)用字母表示规律。

在这个环节里,抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。通过学生讨论、交流、汇报等环节,还给学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。

(五)实践应用

我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。

基础训练就是书上第58页的想想做做1、2、4、5。

应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。

(六)全课总结

四、教学方法

课程标准提出“让学生经历有效地探索过程”。我在教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。采用了“激趣、引探、释疑、导练、启思”的教学模式,以问题解决为中心,让学生在数学活动中体验数学,在做数学的过程中感悟数学,实现了运算律的抽象内化,同时也体验到学习数学的乐趣。

《《运算律》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式